(eBook PDF) Data Mining Concepts and Techniques 3rd – Digital Ebook – Instant Delivery Download
Product details:
- ISBN-10 : 9780123814791
- ISBN-13 : 978-9380931913
- Author:
Book annotation not available for this Data Han, Jiawei/ Kamber, Micheline/ Pei, Elsevier Science LtdPublication 2011/06/22Number of 703Binding HARDCOVERLibrary of 2011010635
Table of contents:
- Dedication
- Foreword
- Foreword to Second Edition
- Preface
- Organization of the Book
- To the Instructor
- To the Student
- To the Professional
- Book Web Sites with Resources
- Acknowledgments
- Third Edition of the Book
- Second Edition of the Book
- First Edition of the Book
- About the Authors
- 1. Introduction
- Publisher Summary
- 1.1 Why Data Mining?
- 1.2 What Is Data Mining?
- 1.3 What Kinds of Data Can Be Mined?
- 1.4 What Kinds of Patterns Can Be Mined?
- 1.5 Which Technologies Are Used?
- 1.6 Which Kinds of Applications Are Targeted?
- 1.7 Major Issues in Data Mining
- 1.8 Summary
- 1.9 Exercises
- 1.10 Bibliographic Notes
- 2. Getting to Know Your Data
- Publisher Summary
- 2.1 Data Objects and Attribute Types
- 2.2 Basic Statistical Descriptions of Data
- 2.3 Data Visualization
- 2.4 Measuring Data Similarity and Dissimilarity
- 2.5 Summary
- 2.6 Exercises
- 2.7 Bibliographic Notes
- 3. Data Preprocessing
- Publisher Summary
- 3.1 Data Preprocessing: An Overview
- 3.2 Data Cleaning
- 3.3 Data Integration
- 3.4 Data Reduction
- 3.5 Data Transformation and Data Discretization
- 3.6 Summary
- 3.7 Exercises
- 3.8 Bibliographic Notes
- 4. Data Warehousing and Online Analytical Processing
- Publisher Summary
- 4.1 Data Warehouse: Basic Concepts
- 4.2 Data Warehouse Modeling: Data Cube and OLAP
- 4.3 Data Warehouse Design and Usage
- 4.4 Data Warehouse Implementation
- 4.5 Data Generalization by Attribute-Oriented Induction
- 4.6 Summary
- 4.7 Exercises
- Bibliographic Notes
- 5. Data Cube Technology
- Publisher Summary
- 5.1 Data Cube Computation: Preliminary Concepts
- 5.2 Data Cube Computation Methods
- 5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology
- 5.4 Multidimensional Data Analysis in Cube Space
- 5.5 Summary
- 5.6 Exercises
- 5.7 Bibliographic Notes
- 6. Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods
- Publisher Summary
- 6.1 Basic Concepts
- 6.2 Frequent Itemset Mining Methods
- 6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods
- 6.4 Summary
- 6.5 Exercises
- 6.6 Bibliographic Notes
- 7. Advanced Pattern Mining
- Publisher Summary
- 7.1 Pattern Mining: A Road Map
- 7.2 Pattern Mining in Multilevel, Multidimensional Space
- 7.3 Constraint-Based Frequent Pattern Mining
- 7.4 Mining High-Dimensional Data and Colossal Patterns
- 7.5 Mining Compressed or Approximate Patterns
- 7.6 Pattern Exploration and Application
- 7.7 Summary
- 7.8 Exercises
- 7.9 Bibliographic Notes
- 8. Classification: Basic Concepts
- Publisher Summary
- 8.1 Basic Concepts
- 8.2 Decision Tree Induction
- 8.3 Bayes Classification Methods
- 8.4 Rule-Based Classification
- 8.5 Model Evaluation and Selection
- 8.6 Techniques to Improve Classification Accuracy
- 8.7 Summary
- 8.8 Exercises
- 8.9 Bibliographic Notes
- 9. Classification: Advanced Methods
- Publisher Summary
- 9.1 Bayesian Belief Networks
- 9.2 Classification by Backpropagation
- 9.3 Support Vector Machines
- 9.4 Classification Using Frequent Patterns
- 9.5 Lazy Learners (or Learning from Your Neighbors)
- 9.6 Other Classification Methods
- 9.7 Additional Topics Regarding Classification
- Summary
- 9.9 Exercises
- 9.10 Bibliographic Notes
- 10. Cluster Analysis: Basic Concepts and Methods
- Publisher Summary
- 10.1 Cluster Analysis
- 10.2 Partitioning Methods
- 10.3 Hierarchical Methods
- 10.4 Density-Based Methods
- 10.5 Grid-Based Methods
- 10.6 Evaluation of Clustering
- 10.7 Summary
- 10.8 Exercises
- 10.9 Bibliographic Notes
- 11. Advanced Cluster Analysis
- Publisher Summary
- 11.1 Probabilistic Model-Based Clustering
- 11.2 Clustering High-Dimensional Data
- 11.3 Clustering Graph and Network Data
- 11.4 Clustering with Constraints
- Summary
- 11.6 Exercises
- 11.7 Bibliographic Notes
- 12. Outlier Detection
- Publisher Summary
- 12.1 Outliers and Outlier Analysis
- 12.2 Outlier Detection Methods
- 12.3 Statistical Approaches
- 12.4 Proximity-Based Approaches
- 12.5 Clustering-Based Approaches
- 12.6 Classification-Based Approaches
- 12.7 Mining Contextual and Collective Outliers
- 12.8 Outlier Detection in High-Dimensional Data
- 12.9 Summary
- 12.10 Exercises
- 12.11 Bibliographic Notes
- 13. Data Mining Trends and Research Frontiers
- Publisher Summary
- 13.1 Mining Complex Data Types
- 13.2 Other Methodologies of Data Mining
- 13.3 Data Mining Applications
- 13.4 Data Mining and Society
- 13.5 Data Mining Trends
- 13.6 Summary
- 13.7 Exercises
- 13.8 Bibliographic Notes
- Bibliography
- Index
People Also Search:
data mining for business intelligence concepts techniques and applications
basic concepts of data mining
data mining methods and techniques
5 data mining techniques
data analysis concepts and techniques
data mining concepts models and techniques
data mining concepts and techniques 2nd edition solution manual pdf